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Abstract

We present an analytic result for the 1-loop quantum mass correction in
semiclassical quantization for the twisted φ4-kink on S1 without explicit
knowledge of the fluctuation spectrum. For this purpose we use the contour
integral representation of the spectral zeta function. By solving the Bethe ansatz
equations for the n = 2 Lamé equation, we obtain an analytic expression for
the corresponding spectral discriminant. We discuss the renormalization issues
of this model. An energetically preferred size for the compact space is finally
obtained.

PACS numbers: 02.30.Gp, 02.30.Hq, 03.65.Sq

1. Introduction

It has been known for a long time that on non-simply connected spaces there can exist besides
the standard scalar fields topological twisted fields [1–3]. Recently there has been renewed
interest in phenomenological and theoretical aspects of this kind of field theory [4], especially
for the twisted version of the φ4-model with kink on S1 [5, 6]. This model possesses some
interesting features, e.g. there appears a critical radius R0 for the compactified dimension, so
that for R < R0 a twisted kink solution does not exist. Further more, for R > R0 the twisted
kink is energetically preferred compared to the constant field configuration.

Compact spaces are also important in superstring theories, which are consistent only in
ten spacetime dimensions. If these theories describe the observed physical world, one has to
explain why six space dimensions remain compactified and unobservably small. There are
proposals that a Casimir energy with a non-trivial behaviour with respect to the size of the
compact dimensions may play a significant role in their stabilization [7].

Assuming that in a (1+1)-dimensional quantum field theory the radius R and a mass scale
1/m are the only parameters with dimensions of length (c = h̄ = 1) then from dimensional
considerations the ground-state energy has the general property E(R) = f (r)/R, where the
scaling function f (r) only depends on the dimensionless parameter r = Rm. These scaling
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functions contain information about the conformal field theory reached for r → 0, which is a
UV-fixpoint [5, 8].

To understand the quantum properties of the twisted φ4-model in the semiclassical regime,
one has to consider the 1-loop corrections to the ground state [11]. For R < R0 the spectrum
of the fluctuation equation can be found in [5]. For R > R0 the ground state is the twisted kink
and one has to quantize the small fluctuations in a spatial non-constant background, where the
fluctuation equation is the n = 2 Lamé equation, which is a quasi-exactly solvable differential
equation [9, 10]. This means that only a finite subset of the (anti-)periodic spectrum is exactly
known. Therefore only approximate expressions for the mass of the kink for R ∼ R0 and
R → ∞ were obtained so far [5].

In order to find the mass correction without explicit knowledge of the eigenvalues, we use
the contour integral representation of spectral zeta functions [12, 13], where only an implicit
knowledge of the fluctuation spectrum, the spectral discriminant, is necessary to determine
the 1-loop energy of a smooth background field configuration (for an early attempt in this
direction see [14, 15]). This method was successfully applied to Casimir energy calculations
(for a review see [13] or [16]) or to the evaluation of functional determinants [17, 18].

We construct the spectral discriminant of the n = 2 Lamé equation in terms of Jacobi’s
elliptic functions [19] (the case n = 1 was solved in [14], which is the fluctuation equation
for the sine-Gordon soliton on S1) by solving a corresponding set of transcendental equations.
These equations has been known for a long time [19] and are the Bethe ansatz equations for the
n = 2 Lamé equation [20], because the problem of solving a differential equation is shifted to
the equivalent problem of solving certain transcendental equations. Although the case n = 2
was considered in [15], an explicit construction of the spectral discriminant appropriate for
numerical evaluations was missing there. Recently the n = 2 Lamé equation also appears in
a model of tachyon condensation in string theory [21].

The renormalized expression for the 1-loop quantum mass of the twisted kink in the sector
R > R0 obtained by this procedure interpolates continuously between the well-known result
for the ordinary kink of the φ4-model [12, 22] for R → ∞ and the ground-state energy in the
sector R < R0 [5]. The physical energy which is the sum of the classical and renormalized
1-loop contributions develops a minimum as a function of R, which indicates the existence of
an energetically preferred radius Rmin < R0.

2. Twisted scalar field

In this section we review the classical twisted kink solution in the φ4-theory [5, 6]. After that
we discuss the special properties of the fluctuation equation of the twisted kink, which is the
n = 2 Lamé equation.

2.1. Classical solutions

We consider a self-interacting scalar field φ(x) in two spacetime dimensions with Lagrangian

L = 1

2
∂μφ∂μφ − V (φ), V (φ) = λ

4

(
φ2 − m2

λ

)2

(2.1)

with the spatial direction compactified with radius R. By choosing antiperiodic conditions for
the scalar field φ(x + R) = −φ(x), the only allowed constant field configuration is φ(x) = 0.

In order to find x-dependent static solutions, one has to integrate the static field equation

d2φ

dx2
− V ′(φ) = 0 (2.2)

2
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twice. After solving an elliptic integral (for details see, e.g. [5, 6]) one gets

φ0(x) = m√
λ

√
2k2

k2 + 1
sn

(
mx√
k2 + 1

, k

)
, (2.3)

where sn(x, k) is a Jacobi elliptic function. The elliptic modulus k depends on the radius R of
the compactified dimension

R = 2

m

√
1 + k2K(k), (2.4)

where K(k) is the complete elliptic integral of the first kind. The energy of this classical field
configuration can be expressed in terms of complete elliptic integrals of the first and second
kind:

E(k) = m3

6λ

1

(k2 + 1)
3
2

[(k2 − 1)(5 + 3k2)K(k) + 8(k2 + 1)E(k)]. (2.5)

Remembering the properties of K(k), one sees that, for k → 1, the spatial dimension becomes
decompactified (R → ∞) and the static solution (2.3) reduces to the well- known φ4-kink
solution

φ0(x)
k→1−→ m√

λ
tanh

(
m√

2
x

)
, (2.6)

while the energy (2.5) becomes nothing else than the classical mass of the kink

E(k)
k→1→ 2

√
2

3

m3

λ
. (2.7)

For k → 0 the amplitude of the kink is forced to become zero. This happens at the critical
radius

R0 = π

m
. (2.8)

The value of the energy

E(k = 0) = m3

4λ
π = m4

4λ
R0 (2.9)

matches at the point R = R0 with the energy of the constant field configuration φ(x) = 0:

Eφ=0(R) = m4

4λ
R. (2.10)

2.2. 1-Loop fluctuations

To investigate the stability of static solutions and for semiclassical quantization one has
to expand the field in the Lagrangian into a static part and a fluctuating part φ(x, t) =
φ0(x) + ei

√
λtχ(x) [22], where the small fluctuations also have to be antiperiodic

χ(x + R) = −χ(x). (2.11)

For the determination of the fluctuation spectrum in the Minkowski vacuum without non-trivial
boundary conditions, one has to expand about φ0 = ± m√

λ
, which are the true vacuum states.

The fluctuation equation is then given by

− d2

dx2
χ(x) = κ2χ(x), (2.12)

when introducing the momentum-like parameter κ2 = λ − 2m2. Thus the elementary
excitations in this vacuum have a mass

√
2m.

3
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Every quantization about a non-trivial background φ0(x) will induce a potential U(x) in
the fluctuation equation compared to the Minkowski vacuum:[

− d2

dx2
+ U(x)

]
χ(x) = κ2χ(x). (2.13)

Using φ0 = 0 and φ0(x) given by (2.3) for R < R0 and R > R0 respectively, one can find the
corresponding potentials as

U(x) = −3m2, R < R0,

U(x) = 6m2k2

1 + k2
sn2

(
mx√
1 + k2

, k

)
− 3m2, R > R0.

(2.14)

For R < R0 the energy eigenvalues λ are trivially found as

λn = (2n + 1)2

R2
π2 − m2. (2.15)

In order to have a stable configuration, all eigenvalues λn have to be positive. It is easily seen
that this is the case only for R � π

m
= R0. It follows that for R > R0 the constant field

configuration is unstable.
For R > R0 the fluctuation equation is the n = 2 Lamé equation in Jacobian form[

− d2

dx̄2
+ n(n + 1)k2sn2(x̄, k)

]
χ(x̄) = hχ(x̄), (2.16)

where

h =
(

κ2

m2
+ 3

)
(1 + k2) (2.17)

and x̄ = mx/
√

1 + k2. The term n(n + 1)k2sn2(x) interpreted as a potential in a Schroedinger
equation is called finite-gap potential since the spectrum has n forbidden bands [23]. The
values of the endpoints of the forbidden bands are known (with λ̄ = λ/m2) [10]:

λ̄1,5 = 1 ± 2

√
1 − k2(1 − k2)

k2 + 1
, λ̄2 = 0, λ̄3 = 3k2

1 + k2
, λ̄4 = 3

1 + k2
,

(2.18)

and the corresponding functions are Lamé polynomials (e.g. χ2(x̄) = cn(x̄)dn(x̄)). Out
of these five functions only χ2 and χ3 have the required anti-periodicity and are therefore
the first two eigenfunctions. The eigenfunctions χn(x) for n > 5 are called transcendental
Lamé functions and can be written as infinite power series in Jacobi elliptic functions. The
corresponding eigenvalues λn as functions of the elliptic modulus are not exactly known
[10, 24].

3. Spectral zeta functions

In order to fix the notation we give in this section a short summary of zeta function
regularization and the integral representation of spectral zeta functions [13, 17, 18].

For the eigenvalue problem

Dφ(x, λ) = λφ(x, λ) (3.1)

with a second order differential operator D = −∂2
x + V (x) and properly chosen boundary

conditions, the set of eigenvalues {λi}i∈N is discrete and bounded from below. If (3.1) is a

4
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fluctuation equation obtained by a semiclassical expansion the 1-loop energy contribution to
the classical solution is given by

E1−loop = 1

2

∞∑
n=0

√
λn. (3.2)

In quantum field theories this expression is divergent and has to be regularized. In zeta function
regularization one works with the spectral zeta function formally defined by

ζD(s) = μ1+2s

∞∑
n=1

λ−s
n , (3.3)

with Re(s) > s0, where s0 depends e.g. on the numbers of dimensions. The parameter μ with
dimension of mass is introduced in order that the energy has the correct dimension for all
values of s. One can show [25, 26], that ζD(s) has a well-defined analytic continuation as a
meromorphic function over the whole complex plane s ∈ C. The 1-loop contribution to the
energy of a classical field configuration in zeta function regularization is then defined as the
value of the analytic continuation of ζD(s) at s = − 1

2 :

E1−loop = 1
2ζD(−1/2). (3.4)

For renormalization we will apply the large mass subtraction scheme, which is widely used
in Casimir energy calculations [16]. For a physical field with mass m one expects that all
quantum fluctuations will be suppressed in the limit of large mass m, because for a field with
infinite mass the quantum fluctuations should vanish. So one expects that for m → ∞ there
are no 1-loop corrections at all and a good renormalization condition is [16, 27]

Eren → 0, for m → ∞. (3.5)

With this prescription at hand one can identify and subtract the divergent (when s = − 1
2 is a

pole of ζD(s)) contributions Ediv(s) from E1−loop(s) and the renormalized energy is then given
by

Eren = lim
s→− 1

2

[E1−loop(s) − Ediv(s)]. (3.6)

This can be achieved by introducing counterterms in the Lagrangian, which have to cancel the
Ediv parts [16].

In principle this can be applied to our problem for R < R0 since we know the spectrum in
this case (see (2.15)). But later we will see that after the analytical continuation the m → ∞
limit is not directly accessible.

As discussed in the last section the complete set of eigenvalues for the Lamé equation
under (anti-)periodic boundary conditions is unknown, so representation (3.3) of the spectral
zeta function is of no use for our problem in the case R > R0. We need a representation
of the zeta function, where only an implicit knowledge of the eigenvalues is necessary (see
[13, 16] or [14]). Assume we have a function 	(λ), whose zeros of n th order are at the positions
λi > 0 of the n-fold degenerate eigenvalues of the spectral problem under consideration:

	(λ) = 0 ⇔ λ eigenvalue of D. (3.7)

Such a function is called the spectral discriminant. Then one can write the spectral zeta
function as a contour integral

ζD(s) = 1

2π i
μ1+2s

∫
γ

dλ λ−sR(λ), (3.8)

with resolvent R(λ) = d
dλ

ln 	(λ). The integrand has a branch cut along the negative real
axis and poles at the positions of the zeros of 	(λ). The contour γ runs counterclockwise

5
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from +∞ + iε to the smallest eigenvalue, crosses the real axis between zero and the smallest
eigenvalue and returns to +∞ − iε. Using the residue theorem, one obtains the original
definition of the zeta function (3.3).

A slight modification is needed, when the spectrum contains a zero mode λ0 = 0, which
means that 	(λ) and R(λ) have a zero and pole at λ = 0, respectively, the starting point of
the branch cut. In this case one redefines

	(λ) → 	(λ)

λ
, R(λ) → R(λ) − 1

λ
(3.9)

in the previous equations.
Depending on the behaviour of R(λ) at infinity, for suitable values of s the contour can

now be deformed to lie just above and below the branch cut. One gets [14]

ζD(s) = − sin(πs)

π
μ1+2s

∫ ∞

0
dλ λ−sR(−λ). (3.10)

In terms of the momentum variable κ2 this expression is rewritten as

ζD(s) = − sin(πs)

π
μ1+2s

∫ ∞
√

2m

dκ(κ2 − 2m2)−sR(κ), (3.11)

with

R(κ) = 2κR(−λ)|λ=κ2−2m2 . (3.12)

In deriving (3.10) we have changed λ → −λ, which corresponds to κ → iκ . So the correct
substitution of the integration variable in (3.10) is κ2 = λ + 2m2 to get (3.11).

4. Construction of the spectral discriminant

In this section we construct the analytic expression for the spectral discriminant 	(h) for the
standard n = 2 Jacobi form of the Lamé equation, which is given by

−d2f

dx2
+ 6k2sn2(x, k)f (x) = hf (x). (4.1)

A check with (2.13) and (2.16) shows that h is related to κ2 by (see (2.17))

h =
(

κ2

m2
+ 3

)
(1 + k2). (4.2)

After we have found the discriminant for (4.1) we only have to substitute (4.2) into the found
expression to get the discriminant we are physically interested in.

For the second order differential operators −d2
x +V (x) with periodic potential V (x +R) =

V (x) the discriminant 	(h) is an entire function of h and has the general form
[14, 15, 23, 28, 29]

	(h) = 2 cos(Rp(h)) ± 2, (4.3)

where the negative and positive signs correspond to periodic and antiperiodic solutions,
respectively and p(h) is the quasi-momentum defined by

fh(x + R) = e±ip(h)fh(x). (4.4)

The resolvent for the antiperiodic spectrum is then given by

R(h) = −tan

(
R

2
p(h)

)
p′(h). (4.5)

6
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The general solution for (4.1) is given by [19]

f (x) = H(x + α1)H(x + α2)

(x)2
e−x(Z(α1)+Z(α2)), (4.6)

(H(x),(x) and Z(x) are the Jacobi eta, theta and zeta function respectively) if the additional
parameters α1, α2 fulfil the following two transcendental equations:

sn(α1)cn(α1)dn(α1) + sn(α2)cn(α2)dn(α2) = 0,

(cn(α1)ds(α1) + cn(α2)ds(α2))
2 − ns2(α1) − ns2(α2) = −h.

(4.7)

These equations are nowadays [20] called Bethe ansatz equations of the n = 2 Lamé potential.
The periodic properties of Jacobi’s eta, theta and zeta functions [19, 30] imply

f (x + 2K) = f (x) e2iKp(α1,α2), (4.8)

with the quasi-momentum

p(α1, α2) = iZ(α1) + iZ(α2). (4.9)

In order to find the dependence of the quasi-momentum in terms of the eigenvalue parameter
h we solve the Bethe ansatz equations (4.7). These equations can be written in terms of
sn-functions only

2k2sn4α1 − 2(1 + k2)(sn2α1 − sn2α2) − k2sn2α1sn2α2 − k2sn4α2 − h sn2α2 + 2 = 0,

2k2sn4α2 + 2(1 + k2)(sn2α1 − sn2α2) − k2sn2α1sn2α2 − k2sn4α1 − h sn2α1 + 2 = 0.

The solutions of these equations are found to be

sn2α1 = 4(1 + k2) − h

6k2
+

1

2k2

√
g2(k) − 1

3
(h − 2(1 + k2))2, (4.10)

sn2α2 = 4(1 + k2) − h

6k2
− 1

2k2

√
g2(k) − 1

3
(h − 2(1 + k2))2, (4.11)

where

g2(k) = 4
3 (1 − k2(1 − k2)). (4.12)

Next we eliminate the dependence of the quasi-momentum on α1, α2 in favour of h

p(h) = iZ

⎡
⎣sn−1

⎛
⎝
√

4(1 + k2) − h

6k2
+

1

2k2

√
g2(k) − 1

3
(h − 2(1 + k2))2

⎞
⎠
⎤
⎦

+ iZ

⎡
⎣−sn−1

⎛
⎝
√

4(1 + k2) − h

6k2
− 1

2k2

√
g2(k) − 1

3
(h − 2(1 + k2))2

⎞
⎠
⎤
⎦

(4.13)

and the spectral discriminant for the antiperiodic eigenfunctions is given by

	(h) = 2 cos(2K(k)p(h)) + 2 = 4 cos2(K(k)p(h)). (4.14)

Because we are interested only in the zero points of this function, the prefactor of 4 is not
essential in the following and can be omitted. The resolvent R(h) can then be written as

R(h) = −K(k) tan[K(k)p(h)]p′(h), (4.15)

7
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where the first derivative of the quasi-momentum is given by

p′(h) = − i

2

(h − μ1)(h − μ2)√
(h − h1)(h − h2)(h − h3)(h − h4)(h − h5)

, (4.16)

with

μ1,2 = 3

2

E(k)

K(k)
+

5

2
k2 + 1 ± 3

2

√
2

3
g2(k) +

(
E(k)

K(k)
− (2 − k2)

3

)2

, (4.17)

h2 = 1 + k2, h3 = 1 + 4k2, h4 = 4 + k2,

h5,1 = 2(1 + k2) ± 2
√

1 − k2(1 − k2),
(4.18)

where hi are the values of the endpoints of the forbidden bands and μi are the first two local
extrema of 	(h), which lie inside the two forbidden bands.

The quasi-momentum p(h) and its derivative p′(h) are double-valued functions with
branch points hi, i = 1, . . . , 5 and ∞ and branch cuts along (−∞, h1], [h2, h3], [h4, h5]. For
values of h on the cuts one has p(h + iε) = −p(h − iε) for ε → 0 and therefore the functions
	(h) and R(h) are single valued and have no cuts in the complex plane.

Although for the resolvent (4.15) all five known values of the band ends are needed,
it has only poles at points, which are the eigenvalues of the corresponding anti-periodic
eigenfunction, whose sequence starts with h2 and h3.

5. The 1-loop contributions

In this section we derive the renormalized 1-loop contributions to the ground state of the
twisted φ4-theory. First we discuss the regularization of the energy in the sector R < R0

where only φ = 0 is permitted and argue that the large mass renormalization condition (3.5)
cannot be applied as usual. Then we consider the twisted kink sector R > R0 and find the
renormalized 1-loop contribution to its mass by using (3.5). Afterwards we go back to the
sector R < R0 and use the condition that the renormalized energies in both sectors have to
match for R = R0.

5.1. Regularization in the sector R < R0

We will find two equivalent expressions for the regularized ground-state energy in this sector.
The first one is obtained by analytical continuation by a binomial expansion of the original
expression for the zeta function [5, 31]. The second one is the renormalized integral
representation of the 1-loop energy for R < R0 and is a new result of this work. In [5]
the case R → 0 was discussed.

We start with the fluctuation spectrum (2.15) for R < R0 which is given by (2.15). The
corresponding spectral zeta function

ζD(s) = μ1+2s

∞∑
n=−∞

λ−s
n = μ1+2s

∞∑
n=−∞

[(
(2n + 1)π

R

)2

− m2

]−s

(5.1)

converges for Re(s) > 1
2 . As discussed in section 3, we need for the 1-loop energy the value

of the zeta function at s = − 1
2 , which lies outside the convergence region. The analytical

continuation by a Mellin transformation is not possible because of the negative sign in front

8
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of m2. What we can do is a continuation by a binomial expansion. Following the steps given
in appendix A one finds (see also [31] for a discussion of the series with λn = (n + c)2 + m2)

ζD(s) = 2μ

(
Rμ

2π

)2s ∞∑
k=0

�(s + k)

k!�(s)

(
mR

2π

)2k

(22s+2k − 1)ζ(2s + 2k), (5.2)

where ζ(x) is the Riemann zeta function. This is the analytical continuation of ζD(s) to the
region Re(s) < 1

2 . One sees immediately from the pole of the Riemann zeta function at x = 1,
that ζD(s) has poles at s = 1

2 − k, k ∈ N0. We are particularly interested in the singularity at
s = − 1

2 . With s = − 1
2 + ε, we can make a Laurent expansion around ε = 0 for ζD(s) to get

the divergence explicit. The result reads

ζD

(
−1

2

)
= −2π

R
ζ(−1) +

m2R

2π

[
− 1

2s + 1

∣∣∣∣
s=− 1

2

+ 1 − γ − ln

(
2Rμ

π

)]

+
4π

R

∞∑
n=2

�
(
n − 1

2

)
n!�
(− 1

2

) (mR

2π

)2n

(22n−1 − 1)ζ(2n − 1), (5.3)

where γ is the Euler constant.
At this point one wants to use the renormalization prescription (3.5). If we naively do

this, we have to discard the term with squared brackets. But this is not correct. We cannot
apply the renormalization prescription here, because this expression is only valid for mR < π .
After renormalization in the sector R > R0 we will revisit expression (5.3).

We turn to the integral representation of ζD(s), described in section 3. For R < R0 the
complete set of eigenfunctions λn is known and thus the corresponding spectral discriminant
	(λ):

λn =
(

(2n + 1)π

R

)2

− m2 ⇔ 	(λ) = cos2

(
R

2

√
λ + m2

)
. (5.4)

The integral representation is given by (3.10) with

R(−λ) = −R

2

tanh
(

R
2

√
λ − m2

)
√

λ − m2
. (5.5)

In this expression we have already deformed the integration contour from the poles on the
positive real axis to the branch cut along the negative real axis. This is valid for 1

2 < Re(s) < 1
and mR < π . The restriction mR < π is necessary since for fixed radius R the first eigenvalues
(5.4) become negative when mR becomes larger than π and the corresponding poles of R(λ)

move into the branch cut which makes the integral representation invalid.
For better comparison with other results in the literature we finally switch to the momentum

integration variable κ:

ζD(s) = −μ1+2s sin(πs)

π

∫ ∞
√

2m

dκ(κ2 − 2m2)−sR(κ), (5.6)

with

R(κ) = −Rκ tanh
(

R
2

√
κ2 − 3m2

)
√

κ2 − 3m2
. (5.7)

The limitation 1
2 < Re(s) follows from the divergent behaviour of the integral for κ → ∞.

The asymptotic expansion of R(κ) for κ → ∞ is found to be given by

R(κ) → −R − 3m2R

2κ2
+ O(κ−4). (5.8)

9
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Inserting these first two terms of the asymptotic expansion separately into (5.6) one finds two
terms where simple poles are hidden for s = − 1

2 as can be seen after a Laurent expansion for
s = − 1

2 + ε around ε = 0:

lim
s→− 1

2

E
(1)
div(s) = R

sin(πs)

2π
μ1+2s

∫ ∞
√

2m

dκ(κ2 − 2m2)−s

∣∣∣∣
s→− 1

2

= m2R

4π

[
2

2s + 1

∣∣∣∣
s→− 1

2

− 1 + 2 ln

(√
2μ

m

)]
,

(5.9)

lim
s→− 1

2

E
(2)
div(s) = 3m2R

2

sin(πs)

2π
μ1+2s

∫ ∞
√

2m

dκ
(κ2 − 2m2)−s

κ2

∣∣∣∣
s→− 1

2

= 3m2R

4π

[
− 1

2s + 1

∣∣∣∣
s→− 1

2

+ 1 − ln

(√
2μ

m

)]
.

Again, we have made the divergences explicit, but cannot apply immediately the
renormalization condition (3.5), since these results were derived from an expression valid
for mR < π . We will revisit (5.6) after renormalization in the sector R > R0.

5.2. Regularization and renormalization in the sector R > R0

Now we come to the interesting case R > R0. In this sector we have to use the integral
representation of the spectral zeta function, because only five eigenvalues of a discrete infinity
set are exactly known. The relation between the physical eigenvalues κ2

i of section 2 and the
mathematical eigenvalues hi of section 4 is

κ2 = m2

(
−3 +

h

1 + k2

)
. (5.10)

With the results of our work in section 4 (see (4.13) and (4.16)) we can immediately write
down the integral representation for 1

2 < Re(s) < 1 of our spectral zeta function as

ζD(s) = −μ1+2s sin(πs)

π

∫ ∞
√

2m

dκ(κ2 − 2m2)−s

(
R(κ) +

2κ

κ2 − 2m2

)
, (5.11)

with

R(κ) = −Rκ tanh

(
R

2
p̃(κ)

)
(κ2 + μ1)(κ

2 + μ2)√(
κ2 + κ2

1

)(
κ2 + κ2

2

)(
κ2 + κ2

3

)(
κ2 + κ2

4

)(
κ2 + κ2

5

) . (5.12)

The quasi-momentum p̃(κ) is given by (we have set p(κ) = ip̃(κ))

p̃(κ)= m√
1 + k2

⎧⎪⎨
⎪⎩Z

⎡
⎢⎣sn−1

⎡
⎢⎣
√√√√(1+k2)

(
1+ κ2

m2

)
6k2

+
1

2k2

√
g2(k)− 1

3

(
1 − κ2

m2

)2
(1 + k2)2

⎤
⎥⎦, k

⎤
⎥⎦

+ Z

⎡
⎢⎣−sn−1

⎡
⎢⎣
√√√√ (1 + k2)

(
1 + κ2

m2

)
6k2

− 1

2k2

√
g2(k) − 1

3

(
1− κ2

m2

)2

(1 + k2)2

⎤
⎥⎦ , k

⎤
⎥⎦
⎫⎪⎬
⎪⎭ ,

(5.13)
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as is obtained from (4.13) by the shift (remembering the change κ → iκ after moving the
contour)

λ =
(

− κ2

m2
+ 3

)
(1 + k2). (5.14)

The five values of the endpoints of the forbidden bands are given by

κ2
1 = −2m2, κ2

2 = k2 − 2

1 + k2
m2, κ2

3 = 1 − 2k2

1 + k2
m2,

κ2
4,5 =

(
−1 ± 2

1 + k2

√
1 − k2(1 − k2)

)
m2.

(5.15)

The additional term in the integrand of (5.11) is necessary in order to eliminate the pole at
λ = 0 before deforming the contour in the defining expression (3.8). The first two local
extremal points of the spectral discriminant are

μ1,2 = m2

2(1 + k2)

⎛
⎝3

E(k)

K(k)
− (4 + k2) ± 3

√
2

3
g2(k) +

(
E(k)

K(k)
− 2 − k2

3

)2
⎞
⎠ . (5.16)

The coefficients in the asymptotic expansion of R(κ) for κ → ∞ can be written in terms of
polynomials in κ2

i and μj :

R(κ) → r0 +
r1

κ2
+ O(κ−4), κ → ∞, (5.17)

with

r0 = −R = − 2

m

√
1 + k2K(k),

r1 = −R

[
μ1 + μ2 − 1

2

5∑
n=1

κ2
n

]
= − 3m√

k2 + 1
[(k2 − 1)K(k) + 2E(k)],

(5.18)

where we have used (5.15) and (5.16). Inserting this asymptotic form back into (5.11) and
making a Laurent expansion for s = − 1

2 + ε around ε = 0 we find

lim
s→− 1

2

E
(1)
div(s) = − r0m

2

4π

[
2

2s + 1

∣∣∣∣
s→− 1

2

− 1 + 2 ln

(√
2μ

m

)]
,

lim
s→− 1

2

E
(2)
div(s) = − r1

2π

[
− 1

2s + 1

∣∣∣∣
s→− 1

2

+ 1 − ln

(√
2μ

m

)]
.

(5.19)

Applying the large mass subtraction condition (3.5), we have to discard these terms completely:

Eren = lim
s→− 1

2

[
E1−loop(s) − E

(1)
div(s) − E

(2)
div(s)

]
. (5.20)

The zero mode cancelling term present in (5.11) becomes zero in the used regularization for
s → − 1

2 and needs no further subtraction. We get as final result for the 1-loop contribution to
the energy of the twisted kink in the sector R > R0

Eren(k) = 1

2π

∫ ∞
√

2m

dκ
√

κ2 − 2m2
[
R(κ) − r0 − r1

κ2

]
, (5.21)

where R(κ) and r0, r1 are given by (5.12) and (5.18). Equation (5.21) is the main result of
this work. It gives the renormalized 1-loop energy of the twisted kink depending implicitly
on the radius R by the elliptic modulus k. Before we discuss the numerical evaluation of the
remaining integral we will carry out the renormalization in the sector R < R0.

11
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5.3. Renormalization in the sector R < R0

We have seen in section 5.1 that the large mass renormalization condition (3.5) cannot be
applied to (5.6) for R < R0, but now we have a renormalized result for the energy for R > R0

and a natural renormalization condition for R < R0 is that the renormalized energy for R < R0

has to match at R = R0 the renormalized energy for R > R0:

Eren,R<R0(R) → Eren,R>R0(R0) for R → R0. (5.22)

With the results of appendix B the quasi-momentum for R > R0 reduces to

p̃(κ) → −
√

κ2 − 3m2 (5.23)

for k → 0 which means R → R0. The eigenvalues κ2
i and the extremal points μi in this limit

are

κ2
1 , κ2

2 , μ2 → −2m2, κ2
3 , κ2

4 , μ1 → m2, κ2
5 → −3m2, k → 0. (5.24)

With these results we find for (5.12) in this limit

R(κ) → −R0κ tanh
(

R0
2

√
κ2 − 3m2

)
√

κ2 − 3m2
, k → 0. (5.25)

By noting that in the limit k → 0 the asymptotic coefficients (5.18) become

r0 → −π

m
= −R0, r1 → −3mπ

2
= −3m2R0

2
, (5.26)

it is seen that the subtraction terms (5.19) coincide with the divergent terms (5.9) at R = R0.
Using now the improved renormalization condition for R < R0 we see that we have to subtract
(5.9) completely from (5.6) and get

Eren(R) = − R

2π

∫ ∞
√

2m

dκ
√

κ2 − 2m2

[
κ tanh

(
R
2

√
κ2 − 3m2

)
√

κ2 − 3m2
− 1 − 3m2

2κ2

]
, (5.27)

which matches exactly the expression (5.21) when setting k = 0 and R = R0.
Since the subtraction terms for R < R0 are now identified as (see (5.9))

E
(1)
div + E

(2)
div = m2R

4π

[
− 1

2s + 1

∣∣∣∣
s→− 1

2

+ 2 − ln

(√
2μ

m

)]
(5.28)

they have to be subtracted also from the expression of the analytically continued zeta function
(5.3) obtained by the binomial expansion. We get

Eren(R) = −π

R
ζ(−1) − m2R

4π

[
1 + γ + ln

(√
2mR

π

)]

+
2π

R

∞∑
n=2

�
(
n − 1

2

)
n!�
(− 1

2

) (mR

2π

)2n

(22n−1 − 1)ζ(2n − 1). (5.29)

Equations (5.27) and (5.29) are representations of the same function Eren(R) valid for mR < π .
As a byproduct we have therefore obtained the following interesting identity:∫ ∞

√
2

dx
√

x2 − 2

[
x tanh

(
r
2

√
x2 − 3

)
√

x2 − 3
−1− 3

2x2

]
= 2π2

r2
ζ(−1) +

1

2

[
1 + γ + ln

(√
2r

π

)]

+
2
√

π

r2

∞∑
n=2

�
(
n − 1

2

)
n!

( r

2π

)2n

(22n−1 − 1)ζ(2n − 1), (5.30)

where we have set κ = mx and r = Rm.

12



J. Phys. A: Math. Theor. 42 (2009) 045404 M Pawellek

5.4. The limit R → ∞
For k → 1 the twisted kink reduces to the standard φ4-kink and (5.21) has to reproduce the
standard mass correction formulae of the literature. In this limit the five eigenvalues κi and
extremal points μi of the spectral discriminant are

κ2
1 , κ2

5 , μ2 → −2m2, κ2
2 , κ2

3 , μ1 → −m2

2
, κ2

4 → 0, k → 1. (5.31)

For R → ∞ our result (5.21) has to match with the kink mass calculated via the phase shift
in [12]:

Eren =
2∑

n=1

1

2π

∫ ∞
√

2m

dκ
√

κ2 − 2m2
d

dκ

[
δ(κ) − 2

κ̃n

κ

]
, (5.32)

with the derivative of the phase shift given by

d

dκ
δ(κ) = d

dκ

2∑
n=1

ln
κ + κ̃n

κ − κ̃n

= −2
(κ̃1 + κ̃2)(κ

2 − κ̃1κ̃2)(
κ2 − κ̃2

1

)(
κ2 − κ̃2

2

) , (5.33)

with

κ̃1 = m√
2
, κ̃2 =

√
2m. (5.34)

By comparison of (5.21) in the limit k → 1 with (5.32) we find the identity

lim
k→1

[
R(κ) +

2

m

√
1 + k2K(k)

]
= − 3

√
2m(κ2 − m2)(

κ2 − m2

2

)
(κ2 − 2m2)

, (5.35)

which we have confirmed numerically.

5.5. Comment on renormalization schemes

The physical results have to be independent of the renormalization scheme. In the perturbative
approach to renormalizable quantum field theories the renormalization of the n-point functions
is obtained by counter terms (see [33] for a discussion of this point in the context of the
Casimir effect). In φ4 theory in (1+1) dimensions only the 2-point function requires infinite
renormalization at one loop by the condition of vanishing tadpole Feynman graphs [22]:

δm2 = 3λ

4π

∫ ∞

−∞

dk√
k2 + 2m2

. (5.36)

In zeta function regularization, this becomes

δm2(s) = μ−1+2s 3λ

4π

∫ ∞

−∞
dk(k2 + 2m2)−s , (5.37)

and after analytic continuation one gets for s = 1
2 + ε and ε → 0:

δm2 = 3λ

2π

[
1

2ε
+ ln

(√
2μ

m

)]
. (5.38)

The renormalization of the kink mass in the case of the infinite line consists of [22]

E = Ecl + E1−loop − Evac − Ec.t, (5.39)

where Evac is the divergent vacuum energy and Ec.t is given by (after regularization)

Ec.t. = −
√

2m

λ
δm2 = − 3m√

2π

[
1

2ε
+ ln

(√
2μ

m

)]
. (5.40)
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ren R

Figure 1. The renormalized 1-loop energy Eren(R) with m = 1, λ = 0.1.

In the previous section we used the large mass renormalization which results in

E = Ecl + E1−loop − E
(1)
div − E

(2)
div . (5.41)

By (5.19) in the limit k → 1 one finds

Ec.t = E
(2)
div − 3m√

2π
, Ev = E

(1)
div +

3m√
2π

. (5.42)

With this identification the large mass renormalization scheme used in this work is consistent
with the standard n-point function renormalization prescription (see also [34]).

6. Discussion of numerical evaluations and physical implications

In the following we present some numerical evaluations of our formulae derived in the last
section. First we have to state the region of validity of our semiclassical quantization. In
units where h̄ = 1, the dimensionless expansion parameter is λ/m2 [22]. Our results are valid
as long as λ/m2 	 1, we choose therefore λ = 0.1 and plotted the energy in units of m.
Although only

E(R) = Ecl(R) + Eren(R) (6.1)

is the physical measurable quantity we have plotted Eren(R) for its own. Figure 1 shows
the 1-loop contribution Eren(R) given by (5.27) for R < R0 and (5.21) for R > R0. For
small R this contribution behaves like the Casimir energy of a free massless scalar field with
anti-periodic boundary conditions as can also be seen from (5.29):

Eren(R) → −π

R
ζ(−1), R → 0. (6.2)

Before R approaches the critical radius R0 the function develops a turning point and goes
to negative energy values. At the critical radius R0 a cusp appears.

For R → ∞Eren(R) approaches the value of the 1-loop energy of the standard kink
[12, 22]:

Eren →
(

1

2
√

6
− 3√

2π

)
m = −0.4711m, k → 1. (6.3)

Figure 2 shows the physical energy (6.1) of the φ = 0 configuration in the sector R < R0

and the twisted kink for R > R0. The appearance of a cusp in the physical energy E(R) up
to 1-loop at R = R0 may be interpreted as a kind of first order phase transition since at this

14
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4
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8

E R

Figure 2. The physical energy E(R) with m = 1, λ = 0.1.

point the ground state changes from the homogeneous phase φ(x) = 0 to the twisted kink
φ(x) ∼ sn(x). For a true phase transition the cusp has to remain in an all loop result. But since
R0 ≈ 1/m one expects additional higher loop fluctuations which travel around the compact
dimension and may significantly contribute and therefore smooth out the cusp in an all loop
result.

Further we see that there exists an energetically preferred radius Rmin < R0. Using the
approximation (6.2) the stabilization radius is given by

Rmin ≈ 1

m

√
λ

m2
(= 0.31 for m = 1, λ = 0.1). (6.4)

The stabilization radius exists since when we are going to smaller radius R the classical
part of (6.1) becomes less and less important compared to the growing 1-loop Casimir-like
contribution (5.27).

Finally, the sector R > R0 is dominated by the classical energy of the twisted kink. As
one can see, the 1-loop corrections do not change the qualitative behaviour of the classical
contribution.

One may worry about the balancing of classical and 1-loop contributions to the energy
which results the minimum. The energy is formal an expansion in the parameter α = λ

m2 :

E(R) = 1

α
ε−1(R) + α0ε0(R) +

∑
n=1

αnεn(R). (6.5)

The balancing of the terms of order α−1 and α0 is only valid if the higher loop contributions
can be neglected. To see more clearly that this is indeed the case for small enough radius R
we expand the field φ and rescale the coordinates xμ by

φ(x) = 1√
α

φ̄0 + φ̃, xμ = Rx̄μ. (6.6)

The fluctuation action is then be written as (using φ̄0 = 0 for R < R0)

S̃ =
∫ 1

0
d2x̄

[
1

2
∂̄μφ̃∂̄μφ̃ − +

1

2
m̄2φ̃2 − 1

4
λ̄φ̃4

]
, (6.7)

with the dimensionless parameters

λ̄ = R2λ, m̄ = mR, α = λ

m2
= λ̄

m̄2
, (6.8)
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in contrast to the case of φ4 on the infinite line, where only one dimensionless parameter α

exists (this quite similar to massless scalar electrodynamics discussed in [37]). Now one can
see that making the radius of the compactified dimension small (R → 0) by holding λ and m
fixed is equivalent to decreasing the effective dimensionless coupling constant λ̄ for the theory
on the unit circle. In the limit R → 0 one ends up with a free Gaussian action and the terms
of O(α) can be neglected. So for some small R̃ < R0 the only relevant terms are the classical
and 1-loop contribution. Since Rminm ≈ √

α (see (6.4)), by appropriate choice of m one can
achieve Rmin < R̃ and the minimum is valid.

Of course a quantitative estimate of the higher loop effects lies beyond the scope of this
paper. Nevertheless a quantitative comparison of semiclassical and exact results is in principle
possible in the case of the sine-Gordon soliton on S1 which is an integrable model [36]. The
corresponding fluctuation equation is the much simpler n = 1 Lamé equation [38]. This will
be discussed elsewhere [39].

When λ/m2 > 0.88 the energy of the twisted kink E(k) becomes negative for certain
values of k (or R). Fortunately this happens outside of the region of validity λ/m2 	 1.
Although negative energies are no problem as long as one talks about Casimir energies, one
runs into troubles if one wants to interpret E(k) as the mass of the twisted kink. It is known
from the sine-Gordon model that for values of the coupling constant where the mass of the
quantum soliton is formally negative the theory has no stable ground state [40].

7. Conclusion

We have constructed an integral representation of the 1-loop energy contribution of the twisted
kink of φ4-theory in semiclassical quantization appropriate for numerical evaluations. We used
special finite-gap properties of the fluctuation equation, which is the n = 2 Lamé equation,
to obtain an analytic expression for the spectral discriminant 	(λ) and the related quasi-
momentum p(λ). Although the Lamé equation is a classic subject in mathematical physics, an
explicit expression for the quasi-momentum in the case n = 2 as a function of the eigenvalue
parameter λ, was still missing [15].

Our renormalized expressions of the 1-loop energy refine some previously obtained results
in [14, 15] and completes the discussion in [5] for twisted φ4-theory in the sector R > R0.
We have shown that the large mass renormalization condition cannot be applied for R < R0

because the analytic continuations by the binomial expansion and integral representation are
only valid for mR < π .

Therefore we have fixed the energy renormalization in this sector after renormalization
for R > R0 by the condition that the renormalized energies have to be continuous at R = R0.
In the limit R → ∞ we have obtained the well-known 1-loop energy of the standard φ4-kink.
A further observation we made is that for R < R0 a dynamical preferred radius Rmin exists.
The existence of a minimum in the energy is a result of the interplay between the classical and
1-loop energy contributions.

Considering the discussed problem with the effective potential method [37] seems not
adequate by two reasons. For R > R0 the twisted kink solution is a non-trivial static field
configuration. So one should have to consider a derivative expansion which is a further
approximation and therefore some kind of unsatisfactory. And for R < R0 by the anti-
periodic boundary condition the only allowed constant field configuration is φ = 0. Therefore
in this case considering an effective potential V (φ) is also useless.

From the viewpoint of identifying a mechanism for stabilizing extra dimensions one has
to include gravity in our considerations and examine whether minima in the energy density
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appear [7]. Also one can impose on (4.6) other boundary conditions as (anti-)periodic, e.g.
orbifold compactification S1/Z2 and analyse the 1-loop effects to the corresponding orbifold
kinks [43–46]. The fluctuation equation remains the same, only the allowed eigenvalues will
change by the different boundary conditions.

In order to find the quasi-momentum and the spectral discriminant for n > 2 Lamé
equations, one has to solve a set of n Bethe ansatz equations, which become increasingly
complicated for larger n [19]. At least the first derivatives of the quasi-momentum up to n = 5
are known explicitly [41]. These Lamé equations can be understood as fluctuation equations
of kink solutions of some quantum field theory on S1 where the interaction V (φ) is only known
implicitly. In the limit R → ∞ the n > 2 Lamé equations will then lead to the reflectionsless
potentials considered in [35, 42].

Appendix A. Analytical continuation by binomial expansion

Consider the spectral zeta function (5.1)

ζD(s) = 2μ1+2s

∞∑
n=0

[(
(2n + 1)π

R

)2

− m2

]−s

. (A.1)

For mR
π

< 1 we can expand (A.1) in binomials:

ζD(s) = 2μ

(
Rμ

π

)2s ∞∑
n=0

∞∑
k=0

�(1 − s)

k!�(1 − s − k)
(−1)k

(
Rm

π

)2k

(2n + 1)−2s−2k. (A.2)

In the region of absolute convergence, we can interchange the order of summation

ζD(s) = 2μ

(
Rμ

2π

)2s ∞∑
k=0

�(s + k)

k!�(s)

(
mR

2π

)2k

(22s+2k − 1)ζ(2s + 2k), (A.3)

where we have used the following identities:

�(1 − s)

�(1 − s − k)
= (−1)k

�(s + k)

�(s)
(A.4)

and
∞∑

n=0

(2n + 1)−2s−2k = (1 − 2−2s−2k)ζ(2s + 2k), (A.5)

with the Riemann zeta function ζ(s).

Appendix B. Spectral discriminant in the limit k → 0

From (4.10) one sees, that α1 → iK′ for k → 0. We use therefore the following identities for
the Jacobi zeta function with imaginary argument:

Z(iu, k) = i

[
sn(u, k′)dn(u, k′)

cn(u, k′)
− Z(u, k′) − πu

2KK′

]

= i

[
−i

sn(iu, k)dn(iu, k)

cn(iu, k)
− Z(u, k′) − πu

2KK′

]
. (B.1)
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From (4.10) one also gets

cn2α1 = 2k2 − 4 + λ

6k2
− 1

2k2

√
g2(k) − 1

3
(λ − 2(1 + k2))2, (B.2)

dn2α1 = 2 − 4k2 + λ

6
− 1

2

√
g2(k) − 1

3
(λ − 2(1 + k2))2. (B.3)

So (B.1) can be written as

Z(iu, k) = i

⎡
⎢⎢⎣−i

√√√√√√
4(1+k2)−λ

6k2 + 1
2k2

√
g2(k) − 1

3 (λ − 2(1 + k2))2

2k2−4+λ
6k2 − 1

2k2

√
g2(k) − 1

3 (λ − 2(1 + k2))2

×
√

2 − 4k2 + λ

6
− 1

2

√
g2(k) − 1

3
(λ − 2(1 + k2))2 − Z(u, k′) − πu

2KK′

⎤
⎦ .

(B.4)

For k → 0 and u → K′ this reduces to

Z(iu, k) → i

⎡
⎣
√

2 + λ

6
− 1

2

√
λ(4 − λ)

3
− 1

⎤
⎦ . (B.5)

The quasi-momentum becomes

p(λ)
k→0−→ −

√
2 + λ

6
− 1

2

√
λ(4 − λ)

3
−
√

2 + λ

6
+

1

2

√
λ(4 − λ)

3
+ 2

= −

√√√√2 + λ

3
+ 2

√(
2 + λ

6

)2

− 1

4

λ(4 − λ)

3
+ 2 = −

√
λ + 2. (B.6)

Finally the spectral discriminant becomes

	(λ) → cos2
(π

2

√
λ
)

. (B.7)
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